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Jonquiere polynomials Jk are defined by the rational function 2:t' nkz"=
Jk(z)/(I-z)k+l, kEN". For a general class of polynomials including Jk, the limit
distribution of its zeros is computed. Recently Dette and Studden have found the
asymptotic zero distributions for Jacobi, Laguerre, and Hermite polynomials
P~""·P,I, L~,",I, and H~,",I with degree dependent parameters (x", {J" by using a con­
tinued fraction technique. In this paper these limit distributions are derived via a
differential equation approach. If' 1995 AcademIC Press. Inc.

O. INTRODUCTION AND SUMMARY

In this paper we are concerned with some sequences of polynomials, the
zeros of which are real, and in particular we deal with the computation of
the limit distributions of their zeros.

First we consider Jonquiere polynomials, J k say, which may be defined
by the power series expansion of the rational function

OC ( d)k II nkz ll = z-,:: --.,
lI~O d~ I-~ . (l - Z)k + I'

(0.1 )

[cf. 27, problem 46, p. 7; 16]. Sometimes, apparently in numerical analysis,
Jk and its modifications also are called Euler-Frobenius polynomials.
Obviously Jk is a polynomial of degree k, and by Rolle's theorem all its
zeros are simple, real, and nonpositive. Jonquiere polynomials and their
zeros play an important role in various parts of mathematics and its
applications, for instance in summability theory [25, Chap. IV.3],
approximation theory [11,18,23,28], and in the theory of the structure
of polymers [30]. The zeros in particular have been investigated in great
detail; some of the corresponding work in the literature is concerned with
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inequalities [e.g. 11], parameter dependence [II, 34], and asymptotic
properties [6, 10, 28] as well. Denoting the zeros of Jk by x kv, which we
may assume to be numbered according to

(0.2)

and denoting its counting function by

(0.3 )

the global asymptotic behaviour of the zeros has been described by the
limit distribution [6, 10]

I ~ dt
lim - Nk( f,) = f 2 2 '
k~xk-x (-t)(log (-t) + n )

- 00 < f, ~ 0, (0.4)

which may be regarded as a "logarithmic" Cauchy distribution. General­
izing Jonquiere's function (0.1) in [9, IS], power series of the type

(0.5 )
11=0

have been investigated with regard to various properties of their zeros.
Here Ek denotes an exponential polynomial that is

I'

Ek(x) = I Pk,-I(X) eX'X,
v=l

XEC, (0.6)

say, Pk, _ I being polynomials and ex v E C Then clearly (0.5) defines a
rational function as (0.1) does. For our purpose it is convenient to describe
Ek as a solution of a linear differential equation with constant coefficients.
To this end we suppose throughout that Qk + I is a real polynomial with
(exact) degree k+1~2 and zeros f3k+l.v' v=l, ... ,k+l. If Ek is a non­
identicalIy vanishing and real solution of the initial value problem

E1V )(O) = 0, v = 0, ..., k - 1, (0.7)

(which is uniquely determined except for a multiplicative constant; see
Lemma I) and if 11m f3k+ I. ,I < n, v = 1, ... , k + 1, then among other results
in [9] it is proved that fk has exactly k zeros in the plane which are simple
ones and alI of them are located on the nonpositive real axis. Under these
conditions in particular we may rewrite (0.5) as (see Section 1)

(0.5' )
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where now as in the special case (0.1) (that is, Qk + 1(x) = x k + I) we denote
the numerator polynomial in (0.5') by Jk again and call it a Jonquiere
polynomial, too. Of course, Jk in (0.5') depends on Qk + I' In continuation
of the limiting result (0.4) for the particular case (0.1) we ask for a possible
asymptotic distribution function for the zeros of Jk in (0.5'), provided Qk + I

in (0.7) possesses a "nice asymptotic behaviour."
Attributing equal weights I/(k + I) to each of the zeros /3k + I. v of Qk + I'

we may rewrite the distribution function of these zeros as

I k + 1

Jik(t):=k+1 L bpk+I.,(t),
v = 1

tE C, (0.8 )

where bp(t) denotes the unit mass function at t = /3. Now the central result
of this paper reads as follows. If Jik converges to some probability measure,
Ji say, on the plane, then under some natural additional assumptions and
with the notations of (0.2) and (0.3) we have

-(1) <~ ~O, (0.9)

where

-I f n - 1m t
g(x) ;=- dJi(t),

nx (Iog( - I/x) - Re t)2 + (n - 1m t)2
-00 <x<O,

(0.1 0)

the integral being taken over the strip 11m tl < n (Theorem 1).
Formula (0.4) corresponds to the case Jik = Ji = bo. Other examples and

special cases are also treated in Section 1. As in [6-8] our proofs are based
on a theorem of Grommer and Hamburger which may be looked at as a
continuity theorem for the Stieltjes transform of probability distributions.

In Section 2 we consider Jacobi, Laguerre, and Hermite polynomials
which throughout we denote by p~IX.P>, L~IX), and H~)") respectively, where
the real numbers iX, (3, yare chosen subject to iX, /3 > -I and Y> -1/2. The
definitions of these classical orthogonal polynomials and some well known
formulae as well we take from Szeg6's classic memoir [29, Chap. V] and
Chihara's book [2, p. 157]. In particular, we only mention that these
orthogonal polynomials on the real line pertain to the weight functions
(l-xt(l +x)p on (-I, I), xIXe- X on (0,00), and Ix1 2

)" e- x2 on (-00,00)
respectively. Further, all its zeros are contained in the cited intervals under
the parameter restrictions given above. Various questions of constrained or
weighted polynomial approximations are closely related to these classical
orthogonal polynomials; however, now with degree dependent weights the
parameters iX = iXn, (3 = /3n, and Y= Yn may depend on the degree n.
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Sharpening a theorem of Moak et at. [22] on the denseness of the zeros
of Jacobi polynomials P;,,,,,,{I,,) on certain subintervals of [-I, I], Dette
and Studden [4] derived the asymptotic distribution functions of the zeros
for each of the polynomials P~,a.",{I,,), L~la.,,), and H~i"l, provided that (J,1l'

PIl> -I, YII> -1/2, and they satisfy certain natural limiting conditions,
Their proofs essentially rely on a characterization theorem for these poly­
nomial sequences along with a continued fraction technique [3]. The
second object of the present paper is to give an alternative computation of
the limit distributions for the zeros of P;,a.", /1,,), L ~la.,,), and H ;;'nl, In contrast
to [4] our proof is based on the characterizing differential equations (see
Lemma 3) and the above mentioned continuity theorem for the Stieljes
transform of probability distributions [see also 6-8].

I, JONQUIERE POLYNOMIALS

In the following we prove the main result of this paper. To this end we
first collect some auxiliary results which are basic for the technical treat­
ments of its proof. We consider exponential polynomials (0,6) as solutions
of a differential equation, Introducing the polynomial

k + 1

Qk+l(X):= TI (x-Pk+1,v),
v=l

(1.1 )

where kENo and Pk + 1, v E C:, II = I, ,,', k + I, the following lemma is shown
by straightforward arguments [cf. 26, p, 356], so that we can omit the
proof

LEMMA L Suppose that kENo, Then the solution E k of the initial value
problem

can be written as

E~V\O)=O, v=O,,,,,k-l, E~k)(O) = c # 0

( 1.2)

c f e'x
E k ( x) = -2' , Q (Y) de,

m ( k+ 1 I"
XEC,

C being a simple closed contour with positive orientation enclosing all the
:eros of Qk + I '

Next, we derive explicit representations for the analytic extension of
Jonquiere's function fk under the condition (1.2), If Qk + I is given by (1.1)
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and IXk + 1,1, .. ,lXk +l.p denote the distinct roots among fJk+l.l..,fJk+l.k+I'

then in the following we use the abbreviation

10*,= 10\{e-O<k+l, I e-O<k+l,P}'L-k' \L. , •• " •

LEMMA 2, Assume that kEN and Qk + 1 is given by (I, I), If E k is the
solution of the initial value problem (1.2), then the power series fk(;:) :=
L:~o Ek(n);:n possesses a unique analytic extension onto Ct with repre­
sentations

Pk being a polynomial of degree ~ k and

'x 1
fd;:)=c I ' ,

m~ -ex) Qk+ 1(2mm + 10g(1/;:))

( 1.3 )

(1.4 )

The series in (1.4) is compactly convergent on ct and log( 1/;:) is the principal
branch meaning log( 1/;:) is real for positive ;:,

In case Qk + I (x) = x k + I the representation (1.4) sometimes is called the
Lindelof-Wirtinger expansion [cf. 17, 35].

Proof Employing Lemma 1 for sufficiently small 1;:1 we obtain

c f I d(fk(z)=-, --('
2m C Qk + 1(0 1 - ze

(1,5)

C being chosen such that all the poles of I/Qk + 1 are located in the interior
of C and all the poles (m: = 2nim + log( 1/;:), mE 7L, of 1/( I - ze() in the
exterior of C. A direct application of the residue theorem produces (1.3),
To verify (1.4) it is easily seen that there exists a sequence of circles, CR.
say, with center at the origin and radius R v satisfying R v ~ U) as v~ OC;

and

for all v E N, mE 7L,

where J is some positive constant. Then the quantity SUP(E CR. 11 - ;:e(I- 1 is
finite and does not depend on v, Now another routine application of
residue calculus to (1.5) leads to the expansion (1.4), I

In the remainder of the paper we suppose the polynomial (I, I) to be real
with zeros fJk + I, vEe satisfying

v = 1, "', k + 1, (1.6 )
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and that Ek is a real solution of the initial value problem (1.2) where kEN.
Then, by Lemma 2, the power series (0.5) Ik(=) := L;~~o Ek(n) =" defines a
rational function, that is

(OS)

Jk being the Jonquiere polynomial associated with Pk+ I. v' V = 1, ... , k + 1.
Moreover, by [9, Theorem 1, p. 263], J k has exactly k zeros and all of
them are real, nonpositive, and simple (observe (1.6)). If the distribution
functions (l Ik) N k( f,) and fl k(t) of the zeros of Jk and Qk +, are defined by
(0.3) and (0.8), respectively, then we prove

THEOREM 1. With the notations and assumptions above suppose that the
set K c {t 111m tl < n} is compact such that

Pk+ I. v E K, v = I, ..., k + I, kEN,

and flk converges to a probability measure fl on the plane. Then

Yo'here

I f~lim -Nk(f,) = .g(x)dx,
k~ x k -x

- ex; < f, ~ 0, (0.9)

-1 f n - 1m t
g(x) :=- dfl(t),

nx K (log( -llx) - Re t)2 + (n - 1m t)2
-ex; <x<O.

(0.10)

Proof First we note that all measures flk and fl are supported by K,
which obviously we may assume to be symmetric with respect to the real
axis. For results on weak convergence of probability measures on C we
refer the reader to [1, Sect. 29]. By Lemma 2 (put c := I), we have

k +lx, 1
Jk(=) = Il (l-=ePk+I.,). L . ,

v~L m~-x Qk+L(2mm+log(1/=))

where for =EC.:= {=EC Ilarg:1 <n:} the logarithm is defined by
log(ll=) := 10g(l/I=I) - i arg =. Next, by taking logarithms we obtain

k+L

log Jk(=) = L log(l - =efht 1. ,) -log Qk + 1(log( 1/=))
V= 1

I {I " Qk+ ,(logO/=)) }+ og + L. . ,
",#0 Qk+ 1(2mm + log( 11=))
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and further differentiation yields

where

1 e'
g;;(t): ---

z(1og( I/z) - t) 1- ze'

and

237

(1.7)

(1.8 )

Rk(z) :=_l_!!--.log {I + I Qk+l~log(l/z)) }. (1.9)
k + 1 dz m '" 0 Qk + I(2mm + log(l /z) )

Here for fixed Z E C _, gz has a removable singularity at t = log( I/z) and
thus is continuous and bounded on {t 111m tl < n}. Moreover, the series in
(1.9) converges compactly on C _. Next, we show that this series tends to
zero compactly on a neighbourhood of some positive Zo as k -> 00.

Since K is compact, there are a positive number t5 and a real number
woEC\K such that IImtl:::::;n-t5 for all tEK and U,,(wo):=
{ w I Iw - »'01 < t5} c C\K. Let IV : = log( l/z) E U,,/z( IVo), then clearly we have
Qk + I (2nim + w) # 0 for all integers m. Because

we have

!

_Q=k,--,-+-,-l(-..:W)_I = exp {(k + 1) f log I W - t , df.1k(t)}
Qk+I(2nim+IV) K 2nim+w-t

(1.10)

210g ! w-t I=log 11t~-tI2
2nim + w - t Iw - tlZ + 4nZm- + 4nlml Im(w - t)

MZ
:::::; log -0------,::

M 2 + 2nt5mz

for some positive constant M. Here we have used the compactness of K and
the reality of 11'0' Hence the estimate (1.10) implies that Rk(z) -> 0 as k -> 00

compactly on some neighbourhood of Zo: = e- WII
•
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Now from (1.7) and the weak convergence f.1k - f.1 we obtain

. 1 J~(:)
hm ---=11(:)

k -., k J k (:)
compactly for : E C , (1.11 )

by an application of Vitali's theorem, where

12(:) := f go(t) df.1( t),
K

By (1.8), we get

:EC .

:11(:) --+ Ldf.1(t) = I as : --+X, larg:I"; 7T. - e,

and thus, by a theorem of Grommer and Hamburger [cf. 33, p. 104-105;
31, p. 175; see also 8] and (1.11), 12 is the Stieltjes transform of the limit
distribution of the zeros of J k . Finally, we conclude (0.9) and (0.10) by the
Stie1tjes inversion formula

I
g(x) = - 1m l1(x - iO),

7T.
x<O. I

Remarks. Using the symmetry of the measure f.1(t) with respect to the
real axis in the t-plane which is a consequence of Qk + I being a real poly­
nomial, the following representation of the density g in (0.10) is readily
verified:

1 f 1g(x) = -- 7 df.1(t),
X K(log(-1/x)-t)2+1t~

To illustrate our general result we mention some

-ex <x<O. (0.10')

EXAMPLES AND SPECIAL CASES. (i) If Qk+I(X)=Xk + 1, that is,
f.1k = JI = 6 CH then we get the basic case (0.1) with (0.4) that was mentioned
in the Introduction.

(ii) Suppose that ex I' ... , ex" are distinct complex numbers and 111hEN,

satisfying L(:~ 1 m h = k + I, such that Qk + \(x) = TI(:~ I (x - cxv)"lk' is real­
valued. If limk • '- mh!(k + I) = lev' v = I, ... , p, then we have
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weakly as k -> 00, and the density g of the limit distribution of the zeros is
given by (use (0.10'))

I P A
g(x) = -- L v 2 2' X < O.

xV~I(log(-I/x)-exv) +n

In particular, this case entails the example (0.5) for which Ek(x) =

J~ e-'tk
-

1 dt is the incomplete r-function [cr. 15, p. 219]. Here we have
p=2, ex l = -I, ex 2=0, mkl =k, mk2 = I, Al = I, A2=0, and

I I
g(x)= -- ,

x (log( - x) - I )2 + n2 x<O.

(iii) Let Qk + 1 := p~"/t' be the Jacobi polynomial of degree k + I with
ex, f3 > - I or some other sequence of orthogonal polynomials on [ - I, I]
belonging to the Szego class [cr. 29, 31]; then it is well known that f.l is the
arcsin measure on [ -I, I]. Hence (0.10) reduces to

I fI I dtg(x) = -- , ,
x _dlog(-I/x)-t)-+n2njl_t2

Observing that f.l has the Stieltjes transform

x<O.

f
+l I dt

-I (-t n jl-t 2 '
(E C\[ -I, I],

where the square root is such that j(2 - I is positive if (> I and con­
tinuous throughout C\[ -I, I], a straightforward computation yields for
x < 0 and y := log( - I/x)

(iv) Finally, we mention that by a slight modification of our methods
we are able to treat power series having only zeros which are located on
both the positive and negative real axes. A typical example in this context
is given by

x

f2k+ 1(.:):= L nk sin exn z",
11=0

O<ex<n, kEN,
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having precisely 2k + I zeros in C, k of them being positive and k negative
[9, p. 265]. Since

from Lemma 2 we obtain

f2k + 1(':) = ~: I£ C271im _ irx +\Og(l/.:))k + 1

~ (271im + irx +\Og(1 /.:))k + I)
for.: E C\ {ei~, e - i~}. Now arguments very similar to those in the proof of
Theorem I lead to

where

x>o

x<o.

2. ORTHOGONAL POLYNOMIALS

In this section we will obtain new and simplified proofs of known results
for the classical orthogonal polynomials [cf. 3,4,7,8,12,13,19-21]. For
this purpose we derive in the following lemma the limit distribution of the
zeros for a sequence of polynomials satisfying a linear differential equation
of a certain type. Actually, these polynomials essentially are of hyper­
geometric type [cf. 2, p. 150].

LEMMA 3. Suppose that (a~')), (b~'lj, (c~')), (a\/»), (b\/)), and (a~')) are
sequences of real numbers satisfying

lim a~') = a2'
n- ,-x:.

a(lI)

lim _l_=a"
fl--- ... 'x' n

b(lI)

lim _l_=b
l

,

fl- ... ,x 11

lim C~'I=C2'
/1- ,x

at")

lim ~= I,
" ---.. ,x- 11-

(2.1 )
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and

(bla] - 2b2 )2 + (bi - 4c2 )(4a2 - ai) > 0,

If for every n E N the differential equation

241

(2.2)

possesses a polynomial solution, R n say, with precise degree n and real zeros
only, then

(2.4 )

and for the counting function N n of the zeros of R n we have

(2.5 )

v.'here

for t being such that the real square root is defined and zero elsewhere.

Proof First we note that from the assumption on the polynomial solu­
tion Rn we have c~'}n(n - 1) + b\n)n + a~n) = 0 for every n EN, which implies
(2.4) by (2.1). Next, we consider the sequence of logarithmic derivatives

Z E C\IR, (2.6)

where X
I1V

denotes the zeros of R", all of them being real by assumption.
Substituting y = R n in (2.3) for h" we obtain

(
1 ) (a ln ) bin) ) a

ln
)

(ain)+ b~')z + cin}z2) ~ h~(z) + h~(z) + -;- +-;- z hn(z) + n02 = 0

(2.7)

for z E C\IR. Since all the zeros of Rn are real, (2.6) yields Ihn(z)1 ~ l/IIm zl
for ZEC\IR which implies that the sequence (h,,(z)) is uniformly bounded
on every compact subset of C\IR; that is, (h l1 ) is a normal family on the
upper and the lower half planes individually. Further, by Montel's theorem,
there is a subsequence converging compactly to some holomorphic func­
tion h on C\R Since (h;,(z)) again is a a normal family [14, p. 247], from
(2.7) we infer

ZEC\IR. (2.8)

640/81/2-8
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Putting

and
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(observe (2.4)), by (2.2), the quadratic equation (2.8) has two different
solutions

2
(2.9)

with a proper determination of the square root functions. In particular, we
mention that, by (2.2), A does not vanish identically and that D has two
distinct real roots, I' and .I' with I' <.I', say. Thus each of the functions h ±

defines an analytic function on the cut plane

C* := C\[r, .1'],

and an elementary discussion shows that for x E (I', s), A(x) is positive and
D( x) is negative. Further, by (2.6), for every n E N we have

giving

0< Re(iy hll(iy)):( 1,

0:( Re(iy h(iy)):( 1,

YE~\{O},

yER

(2.10)

(2.11 )

Next, by the use of (2.9), a straightforward computation shows that for
one branch, h _ say, we have

lim Re( iy h _ (iy )) = 1,

whereas for the other branch h + the quantity lim, ~ x Re(iy h +(i.y)) is not
contained in [0, 1]. Hence in view of (2.11) we have to make the choice
h=h_. Moreover, from (2.6) we obtain

1m h(z):( 0

And equivalently by reflection,

1m h(z)? 0

for 1m z > o.

for 1m z < o. (2.12)

In order to prove the convergence of the whole sequence (h ll ), we note
that by (2.7) we can decompose (h ll ) in two complementary subsequences,
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r < t <s,

(h"k) and (h mk ) say, such that h"k->h_ and hmk->h+ compactly on C*.
However, in view of (2.10) the latter case cannot occur. Finally, using (2.9),
(2.12), and [33, pp. 104-105; 31, p. 175J, we get

1
g(a 1 , b[, az, bz ; t) = - 1m h(t - iO),

n

by the inversion formula for the Stieltjes transform [cf. 32, p. 340; 24,
p. 188J, thereby establishing (2.5). Here we have used that in view of the
analytic properties of h the limit distribution possesses a density. (Compare
also, e.g., [6, Sects. 2, 3].) I

As a first application of the preceding Lemma 3 we consider Jacobi poly­
nomials P;,"'" Pn) with parameters oc", fJ" depending on the degree nand
satisfying oc,,, fJ" > -I for all n E N. Thus all zeros of p:,"n. Pn) are located in
the interval [ -I, I]. Suppose that for

there exist

B'= fJ"
,,' 2n + oc" + fJ,,'

nEN, (2.13 )

and that

lim A" =: A, lim B,,=:B
rl-'X'

(2.14 )

D := (I - A + B)(l + A - B)( I - A - B)(1 + A + B),

r:=Bz_Az_jD, s:=Bz-Az+jD.

Clearly we have 0::::; A, B, A + B, D::::; 1. Numbering the zeros x"v of P~,"'" P,,)

according to (0.2) in [22] it was proved that

lim X,,[ = r,
11- x

lim X'III =s
11---+ CIC_'

and the zeros are dense in [r, s J. If the counting function N" of the zeros
of P:,"'" fl,,) is defined by (0.3), then we prove

THEOREM 2 (p~,"n. Pn)). Suppose that the notations and assumptions above
are satisfied.

(i) If A + B < I, then

I
. I I f~j(t-r)(s-t)d
1m - N,,(!;) = , t,

,,~x n n( I - A - B) r 1 - t-
r<!;<s. (2.15)
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(ii) Assume that A + B = 1 and

D" :=(1 ~A,,+B,,)(I+A,,-B,,)(I-A,,-B,,)(I +A,,+B,,).

((X) If A # 1 and B # I, then

-1::::;¢::::;1. (2.16)

(/3) If A = I and lim" ~ C<.. (/3,,/n) = b E [0, oc], then

I ~

lim -N,,(jD,,¢+B,,-A,,)
11-'" 'x' n

=~f~ /1~1/(4(1+b))+(1/jl+b)t-t2dt (2.17)

n r - 1 + (2/ j 1 + b) t '

r _ ::::; ¢ ::::; r +' where r ± = 1/(2 JI+b) ± 1.

(y) IfB=1 andlim,,~x(!X,,/n)=aE[O,oc], then

lim ~ N,,(,JD: ¢ + B" - A,,)
11_ <f...-' n

2 f~ /1-1/(4(1 +a))-(1/jl +a) t-t2
=- m

n '- I - (2/~) t '
(2.18)

s _ ::::; ¢::::; s +' where s ± = -1/(2~) ± 1.

Proof In view of Lemma 3 we put y( x) := p~lx".IJ" I( Y"x + b,J where
}'" > 0, btl E IR have to be determined suitably. Then y satisfies the differen­
tial equation (2.3) (e.g., use (4.2.1) in [29, p. 60]), where

a(") ._I-b;' n

2 . - y;, /1 + !X" + /3" + 1'
b(") .__ 2b" /1

2'- y" n + (x" + /3" + I'

C'(") '­2 .-

/1

n + !X" + /3" + 1' (2.19 )

b\") := _(X" + /3" + 2 /1,

n + (X" + /3" + 1
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(i) If A + B < 1, then we put Yn:= 1 and I n := 0, and in view of
(2.13), (2.14) the limits in (2.1) are given by

I-A-B
az= I +A+B= -Cz,

b __ 2(A +B)
I - I + A + B'

bz =0,
2(B-A)

a --,-----
I-I +A +B'

and they satisfy (2.2). Hence (2.15) follows from Lemma 3.

(ii) If A + B = 1, then we put Yn:= jI)", bn:= Bn- An' Now the
quantities in (2.1) are given by

(IX) az=~, bz=cz=a l =0, b l = -1;

(fl) az = L bz = 1/(2 fi+b) = -ai' Cz = 0, b l = -I;

(y) az=~, bz = -1/(2~)= -ai' cz=O, b l =-1

in the cases IX, fl, and Y respectively, and they fulfill (2.2). Again Lemma 3
completes the proof. I

Remarks. (i) Note that A + B < I IS equivalent to the existence of
both limits

. IXn 2A
lim -=:a= ,
n-""n l-A-B

lim fln =' b = 2B
n _·Xc n' 1 - A - B'

whereas A + B = 1 is the same as lim" -x (IX,,/n) = rx;; or limn _x(fl,,/n) = rx;;.

In the latter case we have

(ii) Other choices of Y" and I n in the Proof of Theorem 2 would
produce other limit distributions within the class given by Lemma 3 (cf.
[4]). We have restricted our considerations to the cases stated in Theorem
2, since they cover all important choices of IXn and fln satisfying (2.14). If
A + B = 1, then, by (2.19), we always get Cz= 0 in (2.5). In particular, for
(2.17) we mention the cases

-I ~~~ I,

and

1 1f~ )3 -2tlim - Nn(JD:, ~ + Bn - An) = - -I- dt,
n _ x n 11: -I/Z + 2t
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if b = 00 and b = 0 respectively. As an example for a different choice of }'"
and 15" we exhibit the following one.

Let a,,/n -> 00 and p,,/n -> b as n -> 00, then in (2.19) choose 15" := - I
and y" := 2n/a". Lemma 3 implies

1 (2n ) I f~ dtlim -N" ~~-I =~2 jU-I,)(I2- t )-,
n - ,x' n (x" n Tl t

where II. 2 = b + 2 ± 2 jb + 1.

(iii) In view of the normalization in (2.16 )-(2.18) we mention that
the centroid B"-A,,=Ul,,-al/)/(2n+a,,+p,,)=(l/n)L~~lx,,vcan be
regarded as the mean value of the zeros of the nth polynomial (cf. [5]).

Finally, we give the corresponding limit distributions for the Laguerre
polynomials L;,"") and the Hermite polynomials H;,"',) which in the case
a,,/n -> 00 have been found recently by Dette and Studden [4] using
analytic continued fractions. For completeness we state the results which
can be derived from Lemma 3 again as Theorem 2 above. Therefore we
omit the straightforward proofs.

THEOREM 3 (L;,'"l). Suppose that a" > -1.

(i) If

then

I. a"
1m -=a

1l-,X' n
and a" + 1K,,:=n+-

2
-, (2.20)

. I 2 + a f~ dt
hm -N,,(K,,~)=~- j(t-r)(s-t)-,
"~CL n 4n r /

r<~<s, (2.21)

a'here r:= 2 - (4/(2 + a)) ja + 1, s:= 2 + (4/(2 + a)) jd-tl.
(ii) Iflim,,~x(a.Jn)= 00, then

The essential property of the scaling sequence K" in (2.20) and (2.21) is
that it grows like a positive multiple of n. The particular choice in (2.20)
is made in the light of known formulae for Laguerre polynomials and in
order to have an easy comparison with various special cases and related
asymptotics [cf. 29, p. 200; 7]. The corresponding limit distributions for
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the Hermite polynomials H~,OCn) are readily deduced from Theorem 3 by
using the connection formulae [see 2, p. 156; 6, pp. 52, 53, 60]

H~~)(z) = (_I)k 2 2kk! L~oc-(I/2)(Z2),

H~';)+ I(Z) = (_I)k 22k + Ik! ZL~OC+(1/21)(Z2)

for kENo.

THEOREM 4 (H:,ocn»). Suppose that IX n > -1/2.

(i) If

then

. elf!
hm -=a

!l-OC' n
and

where

{

2(1 + a) J(t2 - p2)((J2 - t2)

ga(t):= 11: It I '
0,

-(1 < « (J,

p<ltl<(J

elsewhere

and

.=(~( _~))1/2
p. 2 1 l+a '

.=(~( ~))1/2(J. 2 1+ I+a .

and

1.j 1 1 f'~' 2lim - N,,( -J2nIX" 1(1 + IX,,) = -2 - - JI=? dt,
n-cx,n n 0
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